Dexterity Whitepaper

Jarry Xiaq,l Daniel Gunsberg[,2 Robert Leva Michael Setrinlj1 Gregory SnowF

Abstract

Dexterity is a collection of smart contracts on the Solana blockchain. It provides a
framework for trading any instrument with a defined payoff function, including but not
limited to options, futures, perpetual swaps, and bonds. Dexterity leverages the on-
chain order book pioneered by Project Serum to manage trades and portfolio balances.
The framework has a modularized design that creates a hard separation between the
mechanical components of trading market infrastructure (e.g. the order book data
structure, position tracking, funding distribution) and the application-specific logic
that relates to the instruments and exchange operators (e.g. settlement algorithms,
margin calculation, liquidation thresholds, fee model). We believe the flexibility this
modular design creates will allow for a wide spectrum of on-chain market types to be
created and supported by the protocol, making Dexterity a new fundamental building
block for decentralized trading applications.

IEngineer at Solana Labs: jarry@solana.com

2Co-founder at Hxro Foundation: dan.gunsberg@hxro.io

3Co-founder at Hxro Foundation: rob.levy@hxro.io

4Quantitative Researcher at Jump Crypto: msetrin@jumptrading.com

5Principal Engineer at Chicago Trading Company: greg.snow@chicagotrading.com

jarry@solana.com
dan.gunsberg@hxro.io
rob.levy@hxro.io
msetrin@jumptrading.com
greg.snow@chicagotrading.com

1 Introduction

1.1 Why Derivatives

Derivatives trading volume is primarily driven by 2 factors:

1. Derivatives allow traders to hedge various risks associated to their existing positions.

2. Derivatives allow for leveraged risk exposure with varying payoff functions (standard-
ized and exotic) and tenors thus allowing traders to both speculate and hedge in a
capital efficient manner. This provides incentives for both speculators and market
makers to participate.

There have been many past attempts to build on-chain derivatives — on Solana and on
other chains — but the team believes that the approach taken for the Dexterity protocol is
the most generalized and scalable.

1.2 Limitations of Serum

In 2020, Project Serum made a major advancement in on-chain trading by demonstrating
the Solana blockchain’s ability to support a functional on-chain central limit order book
(CLOB). While early versions of the Serum CLOB supported spot markets, the protocol
design made it difficult to support derivatives trading due to the following:

1. Serum couples the order book, matching engine, and asset custody components into a
single contract. Forcing derivatives contracts to take the form of fungible SPL tokens
creates an unintuitive developer interface (and likely a clunky user experience).

2. Serum requires every order (not just trades) to be 100% collateralized. This has
major implications for the capital requirements of both market makers and speculators.
Liquidity providers on Serum are required to lock up their funds in order to make
markets for tokens. This capital can no longer be used for other investments and thus
poses a heavy opportunity cost.

3. Derivatives are created or destroyed when trades occur because they are artificial con-
tracts tied to some underlying asset. This naturally fits well with a callback paradigm
when processing trade events. However, the initial Serum implementation did not
support the ability to inject custom logic for processing trades.

These early design elements led to the creation of a new version of Serum known as Asset
Agnostic Order Book.

The Asset Agnostic Order Book (AAOB) is a program that extracts the data structure
for Serum’s order book and matching engine into a separate smart contract.

The main benefits of this separation are:

1. The AAOB no longer requires composing programs to represent assets with SPL To-
kens.

2. Custom processing of the event queue is performed by an upstream program. This
allows custom callback logic for processing trades.

The innovations made in AAOB unlocked the eventual development of Dexterity.

1.3 Dexterity Overview

Dexterity is a collection of smart contracts that allows for the creation and exchange of
any instrument with a defined payoff function. This encapsulates all traditional derivative
contracts such as futures, options and perps, but also includes fixed income contracts and
binary options (prediction markets). It additionally interfaces with both a customizable fee
model and a customizable risk engine that handles cross-product margining and liquidation.
There is also built-in support for combo (a.k.a. synthetic) products, enabling users to trade
contracts with arbitrary leg ratios (e.g. futures spreads). As a result, the protocol opens up
the door for liquid, decentralized, and capital-efficient trading.

Fee Model
(1 per MPG)

New Order
Consume Orderbook Events

. . New Order
Risk Engine PEEEEitEl e —
(1 per MPG) Transfer Position
Withdraw Funds DEX
: New Order
Apply Funding ol oWn) Asset Ag nostic Consume Orderbook Events
Clear Expired Orderbook
|(n stru n’:‘e‘mf l New Order ew IOg! o Orderbook Remove Market Product
iy Ly New Order Cancel Order ancel broer
product in a MPG) Cancel Order Apply Funding Clear Expired Orderbook
Consume Orderbook Events Transfer Position Remove Market Product owns owns
Transfer Position Deposit Funds
Apply Funding Withdraw Funds
Clear Orderbook Events
Remove Market Product v
— —
. J o _J -
Market Product Group ~ Trader Risk Group Bids/Asks Event Queue
(MPG) (1 per trader)

Figure 1: High-level diagram of Dexterity protocol

The Dexterity Protocol relies on 5 major components:

1. Dex: The Dex contract handles all of the accounting of orders, trades, deposits, with-
drawals, and funding that occur on the exchange. All of the product metadata is stored
in one MarketProductGroup account. Each trader has an associate TraderRiskGroup
account that tracks the state of that trader’s orders, positions, and deposits in a given
MarketProductGroup.

2. AAOB: The Dex contract interacts with AAOB to keep track of the order book (bids
and asks accounts) as well as trades (event_queue account).

3. Instruments: An instrument can be any contract that implements an instruction
that makes a CPI to the ApplyProductFunding instruction in the Dex contract. The
team built a reference Instruments contract that implements the payoff functions of
perpetual and expiring options (a future is just a call option with a strike price of 0). It
also implements the payoff function for a simple fixed income contract. For derivative
settlement, data is pulled from both Pyth| and the Dex order books to determine the
appropriate contract payout. An instruction is exposed that performs a cross program
invocation (CPI) to the Dex contract to record the funding payment for the given
instrument. The MarketProductGroup that stores this instrument will be updated

http://pyth.network

accordingly, and any TraderRiskGroup with an active position in the corresponding
instrument will have unsettled funds that must be applied before any future position
changes.

4. Fee Model: The Dex contract provides a specific interface for computing trad-
ing fees. A fee program that implements this interface is required for setting up a
MarketProductGroup. Whenever a trade occurs, the Dex contract will make a CPI
to the Fee Model (explicitly configured on the corresponding MarketProductGroup),
which then extracts a taker and maker fee for each TraderRiskGroup, and that fee or
rebate is applied to the transaction.

5. Risk Engine: The Dex contract also provides a specific interface for risk calculations.
Whenever an action is taken that could potentially increase the risk of a trader’s
position, a CPI is made from the Dex to the Risk Engine (explicitly configured on the
corresponding MarketProductGroup) to determine whether that action is acceptable.
If the action brings a trader below the required account health, the CPI will fail and
roll back the entire transaction.

A key design decision was made to separate the mechanical accounting operations in
the Dex and AAOB contracts from the business logic in the Instruments, Risk Engine, and
Fee Model contracts. A common analogy in DeFi compares the individual components of
composable smart contracts to Lego blocks. The goal with this modular design is to allow
customizable Legos to be used for any of the business logic components, while keeping the
accounting logic fixed. The Dex does not know or care about fee structure, risk calcula-
tion, or contract settlement. It receives output data from “API calls” and performs basic
numerical operations on those outputs.

2 Design Considerations

2.1 Solana Constraints

Constraints in Solana application development fall into 5 main categories:

1. On-chain computation: Given that the Solana blockchain aims to target a 400ms
block time, the runtime places a hard cap on the number of operations that can be
performed in a single transaction. BPF instructions are assigned a specific number of
“compute units” in the Solana runtime, and any transaction that exceeds a certain
limit will fail. Currently this cap is set at 200000 units. This limit is expected to
increase in future network upgrades.

2. Rent cost: Solana transaction fees are cheap, but allocating account data can be
expensive. It is important to be cognizant of the cost imposed on a user to allocate
on-chain state.

3. Transaction size: The size of a Solana transaction is limited to approximately 1.2
KB. The primary consequence of this is that it limits the number of 32 byte public
keys (i.e. accounts) with which a transaction can interact. The maximum transaction
size will roughly double in future network upgrades.

4. Runtime memory limits: In the runtime, Solana programs limit the size of the
stack to exactly 4KB. This requires the developer to be diligent about not allocating
too many large variables on the stack. Additionally, new accounts that are allocated
through CPIs are limited to approximately 10KB in size, which prevents the use of
Program Derived Addresses (PDAs) for large state accounts.

5. BPF instruction set: Solana programs are compiled to eBPF, which has a limited
instruction set (primarily with respect to floating point operations). These limitations
need to be considered when thinking about what types of numeric algorithms are
feasible.

Protocol and application design considerations need to manage the trade-offs resulting
from every decision. In the design of Dexterity, all of these constraints were evaluated when
building out account storage, instruction interfaces, and core algorithms.

2.2 Anchor

The Dexterity protocol uses the Anchor framework. The biggest benefit of using Anchor is
the auto-generation of an IDL file that is used for building out client code that interacts
with the on-chain protocol. The other main benefits of Anchor are:

1. The reduction of boilerplate code required for account parsing and validation
2. Autogenerated Rust interfaces for interacting with program instructions

3. On-chain program verification

2.3 Object Representation

Early on, a decision was made to store all of the exchange products into one large account
as opposed to many small accounts. There were a few main considerations contributing to
this decision:

e The Solana transaction size makes it advantageous to minimize the number of public
keys used in a transaction.

e Many operations (like potential risk engine implementations) require data from mul-
tiple products. By putting every product into a MarketProductGroup and putting all
of a trader’s positions into a TraderRiskGroup, these calculations could look through
all products and positions with minimal processing from input data.

e Solana clients need to make network requests to pull data from the blockchain. By
keeping fewer large accounts, the client can sustainably make fewer RPC requests and
avoid getting rate limited by the provider.

The only major issue of the large account approach is that the protocol can no longer
deterministically set the account addresses by storing the data in PDAs. The large Dex
accounts easily exceed the 10KB limit, and as a result must be allocated to traditional
keypairs. The primary downside is that those public keys cannot be derived from the client,
but the simplicity of the protocol interface easily outweighs this minor inconvenience.

2.4 Protocol Limitations

Currently, all of the accounts owned by the Dex are allocated to be a fixed size. Because
of this, there are limitations on the number of supported outrights, combos, positions, and
orders for the MarketProductGroup and TraderRiskGroup objects.

pub const MAX_OUTRIGHTS: usize = 128;

pub const MAX_COMBOS: usize = 128;

pub const MAX_TRADER_POSITIONS: usize = 16;

pub const MAX_OPEN_ORDERS_PER_POSITION: u64 = 256;
pub const MAX_OPEN_ORDERS: usize = 1024;

It is possible to make some of these constraints more flexible in the future, but there is
currently no workaround. The main restrictions here are rent cost for the user and compute
budget for handling complex operations like cross margining. A user with 16 (the current
maximum) active positions will require more compute for determining account health and
risk limits than a user with a single active position. Another nice aspect of having statically
sized objects is that it greatly improves the capability of client code to query and search for
accounts. Solana is a heavily write-optimized blockchain, but this can affect read-efficiency.
Therefore, making an active effort to design for efficient reads can have positive downstream
effects on user experience.

2.5 Position Tracking

The most important role of the Dex contract is keeping track of the positions of individual
traders. The primary challenge is the asymmetry between aggressive and passive fills on an
order book. Each passive fill event (i.e. market maker fill) contains enough information to
atomically update the positions and balances for both buyer and seller. However, trades are
always initiated by the aggressor. As a result, there can be instances of aggressive trades
that remove a large number of passive quotes. From a user experience perspective, it is
beneficial to know that

1. The trade transaction was successful and the aggressive order was filled.

2. The fill size of the trade as well as the corresponding change in the account balance
match the expected behavior from the client.

The faster the trader can get a response for their market orders, the less ambiguity there
is between reality and expectation for the end user.

This is possible to guarantee for the taker, but not for the maker(s) due to Solana’s trans-
action size limitation. Because it is clunky (and often impossible) to include the accounts of
every maker who was filled on a large trade transaction, this necessitates the existence of a
queue to asynchronously process trades after the order book state has been modified. This
implementation detail has existed since the first version of Serum and is still present in the
AAOB. However, the AAOB does not perform any accounting on the trades after they are
processed and instead expects the calling program to record state changes.

To deal with the taker/maker asymmetry, the TraderRiskGroup keeps track of taker fills
that have yet to be processed from the event queue in a variable named pending position.
When the fill is eventually processed, the position field of both maker and taker are

updated and the taker’s pending position is modified to reflect this change. Importantly,
only position is taken into account when considering funding.

All deposits and withdrawals to the exchange will transact a specific SPL Token that is
specified on MarketProductGroup initialization. In practice, it will likely be a stablecoin.
Cash positions from deposits and trades are stored in a variable on the TraderRiskGroup
called cash_balance. This variable (and the corresponding pending_cash_balance variable
from taker trades) are also updated on trade fill events.

2.6 Order Tracking

Because accounts on Solana cannot be reallocated as of version 1.8 (expected to be a feature
in future network updates), storing dynamic objects will always have limitations. The AAOB
contract represents orders with a u128 identifier. This identifier encodes the price of the
order (most significant 64 bits) as well as the sequence number for the event (least significant
64 bits). It is then used as the key in a [critbit tree| (trie) representing orders. Cleverly, the
contract will invert the bits of the sequence number when creating a new order for a bid,
to preserve the desired sorting order. This is how the order book supports the price-time
FIFO matching algorithm.

Each TraderRiskGroup needs to track existing orders for each of its positions. The Dex
protocol represents all of the orders in a custom data structure: a collection of disjoint linked
lists that are all stored in a fixed size buffer. The benefits of this structure are:

e It keeps the orders for all products tightly packed.

e A trader can have a higher order limit for an individual product as opposed to a similar
data structure like the following;:

struct OpenOrders {
orders: [u128; MAX_OPEN_ORDERS_PER_POSITION * MAX_TRADER_POSITIONS],
}

This schema might be intuitive at first glance, but it restricts a trader with few active
positions from potentially creating more orders for a specific product. It’s a small
nuance, but the custom data structure provides this extra flexibility.

2.7 Funding

The funding mechanisms for derivative contracts generate inherent value. The market price
of a derivative contract is safeguarded by arbitrage. Because of funding, poorly priced
derivatives should in theory be brought back in line when knowledgeable traders exploit dis-
crepancies between the contract price and funding payout to generate a risk-free profit. In
the case of a decentralized derivative contract, blockchain-native risks like security exploits,
erroneous contract code, and network instability might increase some of the uncertainty
around funding. However, given the proper accounting, audits, and dependency manage-
ment, the same arbitrage arguments should hold for both decentralized and centralized
trading.

Every outright in the MarketProductGroup keeps track of the cumulative funding per
unit (funding). Likewise, every position on a TraderRiskGroup keeps track of last_funding

https://cr.yp.to/critbit.html

which refers to the cumulative funding snapshot of the product at the time of the previous
funding settlement.
The settlement algorithm works as follows:

1. When an instrument is ready to fund, the Instrument contract that stores the instru-
ment metadata computes the funding amount per contract unit (funding per_unit)
based on an oracle price (or any arbitrary source).

2. The Instrument contract then makes a CPI to the Dex program (ApplyProductFunding)
to update the funding variable:

product.funding += funding per_unit;

3. For a trader’s position in an outright, the funding will be credited or debited from
that trader’s cash_balance

4. The funding is applied with the following algorithm:

let amount = (product.funding - trader.last_funding) * trader.position;
trader.cash_balance += amount
trader.last_funding = product.funding

Note that the above algorithm only works if funding is always applied prior to any new
position changes.

2.8 Combo Trading

Support for combo trading (and spread trading in particular) has the potential to boost
overall market liquidity. There are a few reasons for this:

e For cross margining purposes, entering a spread position (e.g. long BTC short ETH) is
less risky than entering each leg of the spread individually if the corresponding assets
are positively correlated. Entering spread trades allows traders to put on positions
with larger notional size for less required capital.

e Traders who need to exit positions (i.e. flatten their portfolio) might opt to use combo
markets as opposed to outright markets. Because some combo positions incur less risk
than the individual legs, the average bid-ask spread on the combo market will usually
be tighter than one or both of the corresponding outright markets. By transacting with
the combo order book, liquidity takers can avoid paying a large amount of slippage
compared to entering an equivalent position through the outright order books.

Given the many advantages of combo trading, the accounting mechanism of trading
combos was designed into the Dex contract.

Combos each have their own order books and metadata in the MarketProductGroup,
but they do not have associated positions in the TraderRiskGroup object. Instead, when
a combo trades, the individual legs of that combo are updated in the TraderRiskGroup
accounts of both the maker and taker according to the combo ratios.

2.9 Risk

The Dex contract treats risk as a black box. This puts the onus of on-chain risk management
on an external protocol, allowing the Dex to operate entirely on well-defined inputs. The
custom Risk Engine component can choose to support leverage, but it will need to manage
the individual margin requirements of each TraderRiskGroup. The interaction between
the Dex and Risk Engine occurs through a series of CPIs. Any operation that changes a
trader’s risk profile will trigger a check to the exchange-configured Risk Engine. If the CPI
returns an error or indicates that the proposed action brings the TraderRiskGroup into an
unhealthy state, the full transaction will be blocked.

Every risk implementation will need to be catered towards the supported instruments
of a given MarketProductGroup. Different instruments will have different (and oftentimes
non-linear) risk profiles that will require custom logic for accurately determining margin
requirements. Exchange operators that wish to support exotic instruments will likely need
to build out robust risk engines to complement these products. Ultimately, the risk interface
provides the opportunity for new teams to continually innovate on top of existing base layers
of Dexterity to provide more Lego blocks for the Solana DeFi ecosystem.

2.10 Liquidation

When the Risk Engine classifies a TraderRiskGroup as below the liquidation threshold, the
Dex will allow users to call an instruction called TransferFullPosition. Invoking this in-
struction will initiate the auto-deleveraging procedure. Any trader in a MarketProductGroup
can choose to take on the portfolio of another trader who is below the liquidation thresh-
old. The instruction first checks that the at-risk trader (liquidatee) is below the re-
quired threshold. If this check succeeds, the liquidator accumulates the positions of the
liquidatee

for (product, value) in liquidatee.positions.iter_mut() {
liquidator.update_position(product, value)?;
*value = 0;

}

The Risk Engine will also return a liquidation price for the liquidatee portfolio. This
price should be discounted from the fair value of the portfolio to punish individuals who
take on too much risk.

liquidatee.cash_balance = liquidation_context.liquidation_price;
liquidator.cash_balance -= liquidation_context.liquidation_price;

In the case that the portfolio value is negative, funds will be pulled out of an insurance
fund to cover the deficit. If the insurance fund is drained (or does not exist), the deficit
will be socialized across all exchange participants. The exact distribution of this social loss
is handled by the Risk Engine. Future versions of the protocol will additionally support
partial liquidations.

3 Technical Challenges
3.1 Decimal Math

Precision is incredibly important when dealing with accounting. eBPF’s limited support
of floating point math necessitates the use of integers for numerical operations. This can
be bypassed by using fixed point math, but fixed point calculations can lead to unintuitive
and potentially inaccurate results as there will always be rounding error when working
with non-integer base 10 operations. A future protocol update might opt to build out a
similar interface for fixed point math if such a feature will yield significant improvements in
performance.

Most programs represent decimals by using a large integer (generally a u64 or i64)
to represent the mantissa (m) and a small unsigned integer (usually u8) to represent the
number of decimal points to shift the mantissa (). A number can be stored as (m, z) where
the value of the number is m x 1077,

When trades occur between different products, the protocol will encounter many arith-
metic operations with fractional inputs. Oftentimes these inputs will also have different
exponent values. To gracefully manage what essentially results in a large dimensional anal-
ysis problem, the team implemented a custom data structure that handles the computation
of decimal arithmetic. This interface abstracts away much of the complex overflow checking
and rounding logic that is performed when adding, subtracting, multiplying or dividing.

3.2 Negative Prices and Price Transformation

In the world of derivatives trading, prices are not always positive. Futures spreads are the
canonical example. Suppose there was a futures spread contract where purchasing a single
unit would correspond to gaining a long position in the future that expires in 1 month and
gaining a short position in the future that expires in 3 months. If the futures curve is in
contango (i.e. the 3 month future trades at a higher market price than the 1 month future),
the price of this futures spread will be negative. This is because “buying” the futures spreads
yields a net cash credit to trader. This cash credit is offset by the negative value of the
position.

This is not always the case, but because combos can be defined with arbitrary ratios,
it is important to be able to support negative trade prices to allow for truly adaptable
markets. A futures spread that changes from being in backwardation to being in contango
necessitates an order book supporting both positive and negative prices.

The technical challenge is that the AAOB only supports positive prices. These prices
are interpreted as fixed point numbers with 32 integer and 32 fraction bits (£fp32), but
represented in the runtime as u64s. Additionally, the order book data structure is lexico-
graphically sorted by the 64-bit string that represents the price. It so happens that u64s
preserve both numeric and lexicographical ordering in the 8-byte representation.

However, the same property does not hold for i64s. Because i64 represents negative
numbers using [T'wo’s Complement, all negative numbers are lexicographically larger than all
positive numbers. Therefore, a solution to this problem would represent negative numbers
in a such a way that neither property (lexicographical or numeric ordering) is violated.
The solution is to translate what each u64 value maps to based off a predetermined offset
(custom per product):

—-0FFSET maps to 0x0000000000000000

10

https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Two%27s_complement

u64::max_value() - OFFSET maps to OxFFFFFFFFFFFFFFFF

An unrelated but desirable property is to represent prices on the order book as integer
tick sizes as opposed to direct prices. This conveniently side steps the fixed point math
done by the AAOB (the 32 fractional bits of integers represented as £p32 are all 0), but the
trade-off is a loss in precision in the maximum number of supported price ticks. The team
could not think of a case where 4,294,967,296 unique prices would be insufficient for a given
product or combo, so this was an acceptable design trade-off.

Adjusting for tick size only requires a division, so the new map looks like the following:

-OFFSET / tick_size maps to 0x00000000
(u32::max_value() - OFFSET) / tick_size maps to OxFFFFFFF

Note that the precision of the range decreased as a result of constraining prices to integer
tick sizes.

When sending an order at price P from the Dex to AAOB, the following linear transfor-
mation is applied:

((P + OFFSET) / tick_size) << 32

The final 32 bit shift casts the unsigned 32 bit adjusted tick size to £p32 (stored in a
u64).

To retrieve data from the order book, the protocol just applies the inverse of the trans-
formation that was performed to process the data. However, there is nuance related to how
trades should be handled.

Let o denote the offset applied to the limit price. When processing trades from the order
book, the matched cash quantity (amount of cash exchanged) is computed as Y | ; (price; +
0) * size; where j is the index of the each filled order.

The desired target is Zj price; * size; so the bias term of o * Zj size; must be removed
from the original expression. The AAOB returns the variables total_base_qty_posted and
total_base_qty to represent the quantity of contract that was traded. It is known that the
matched base quantity is equivalent to total_base_qty - total_base_qty_posted, but this
is also equivalent to > ; sizej. We can now compute and remove the bias term and then
convert all of the AAOB prices (in adjusted tick space) back into real prices by reversing
the original linear transformation.

Disclaimer

This paper is for general information purposes only. It does not constitute investment advice
or a recommendation or solicitation to buy or sell any investment and should not be used
in the evaluation of the merits of making any investment decision. It should not be relied
upon for accounting, legal or tax advice or investment recommendations. This paper reflects
current opinions of the authors and is not made on behalf of Solana Labs, Hxro Foundation,
Jump Crypto, Chicago Trading Company, or their affiliates and does not necessarily reflect
the opinions of Solana Labs, Hxro Foundation, Jump Crypto, Chicago Trading Company, or
their affiliates or individuals associated with them. The opinions reflected herein are subject
to change without being updated.

11

https://www.investopedia.com/terms/t/tick-size.asp

	Introduction
	Why Derivatives
	Limitations of Serum
	Dexterity Overview

	Design Considerations
	Solana Constraints
	Anchor
	Object Representation
	Protocol Limitations
	Position Tracking
	Order Tracking
	Funding
	Combo Trading
	Risk
	Liquidation

	Technical Challenges
	Decimal Math
	Negative Prices and Price Transformation

